训练概览

为什么要进行微调?

交叉编码器模型通常用作检索和重排序搜索栈中的第二阶段重排序器。在这种情况下,交叉编码器会重新排序检索器(可以是Sentence Transformer 模型)提供的top X个候选。为了避免重排序模型降低您用例的性能,对其进行微调至关重要。重排序器始终只有一个输出标签。

除此之外,交叉编码器模型还可以用作对分类器。例如,一个在自然语言推理数据上训练的模型可以用于将文本对分类为“矛盾”、“蕴含”和“中立”。对分类器通常有多个输出标签。

请参阅训练示例,了解您可以采用的各种常见实际应用的训练脚本。

训练组件

训练交叉编码器模型需要4到6个组件,就像训练 Sentence Transformer 模型一样。

模型

交叉编码器模型通过加载预训练的transformers模型并使用序列分类头进行初始化。如果模型本身没有这样的头,它将自动添加。因此,初始化一个交叉编码器模型相当简单。

from sentence_transformers import CrossEncoder

# This model already has a sequence classification head
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")
# And this model does not, so it will be added automatically
model = CrossEncoder("google-bert/bert-base-uncased")

提示

您可以在交叉编码器 > 预训练模型文档中找到预训练的重排序模型。

对于其他模型,最强大的预训练模型通常是“编码器模型”,即训练用于为输入生成有意义的token嵌入的模型。您可以在这里找到强大的候选模型:

考虑寻找针对您的语言和/或领域设计的基模型。例如,klue/bert-base 对于韩语的表现将远优于 google-bert/bert-base-uncased

数据集

CrossEncoderTrainer 使用 datasets.Dataset(一个数据集)或 datasets.DatasetDict 实例(多个数据集,另请参见多数据集训练)进行训练和评估。

如果您想从Hugging Face Datasets加载数据,那么您应该使用datasets.load_dataset()

from datasets import load_dataset

train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train")
eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev")

print(train_dataset)
"""
Dataset({
    features: ['premise', 'hypothesis', 'label'],
    num_rows: 942069
})
"""

一些数据集(包括sentence-transformers/all-nli)需要您提供一个“子集”以及数据集名称。sentence-transformers/all-nli有4个子集,每个子集都有不同的数据格式:pairpair-classpair-scoretriplet

注意

许多Hugging Face数据集通过sentence-transformers标签与Sentence Transformers无缝集成,您可以轻松地通过浏览https://hugging-face.cn/datasets?other=sentence-transformers找到它们。我们强烈建议您浏览这些数据集,以找到对您的任务有用的训练数据集。

如果您有常用文件格式的本地数据,那么您可以使用datasets.load_dataset()轻松加载这些数据

from datasets import load_dataset

dataset = load_dataset("csv", data_files="my_file.csv")

from datasets import load_dataset

dataset = load_dataset("json", data_files="my_file.json")

如果您有需要额外预处理的本地数据,我的建议是使用datasets.Dataset.from_dict()和一个列表字典来初始化数据集,如下所示

from datasets import Dataset

anchors = []
positives = []
# Open a file, do preprocessing, filtering, cleaning, etc.
# and append to the lists

dataset = Dataset.from_dict({
    "anchor": anchors,
    "positive": positives,
})

字典中的每个键都将成为结果数据集中的一列。

数据集格式

重要的是,您的数据集格式与您的损失函数匹配(或者您选择一个与您的数据集格式和模型匹配的损失函数)。验证数据集格式和模型是否与损失函数一起工作涉及三个步骤:

  1. 根据损失概述表,所有未命名为“label”、“labels”、“score”或“scores”的列都被视为输入。剩余列的数量必须与您选择的损失的有效输入数量匹配。这些列的名称无关紧要,只有顺序很重要

  2. 如果您的损失函数根据损失概述表需要一个标签,那么您的数据集必须有一个名为“label”、“labels”、“score”或“scores”的列。此列将自动作为标签。

  3. 模型输出标签的数量与根据损失概述表损失所需的一致。

例如,给定一个具有 ["text1", "text2", "label"] 列的数据集,其中“label”列具有0到1范围内的浮点相似度分数,以及一个输出1个标签的模型,我们可以将其与 BinaryCrossEntropyLoss 一起使用,因为

  1. 数据集有一个“label”列,这是此损失函数所必需的。

  2. 数据集有2个非标签列,正好是此损失函数所需的数量。

  3. 模型有1个输出标签,正好是此损失函数所必需的。

如果您的列顺序不正确,请务必使用 Dataset.select_columns 重新排序数据集列。例如,如果您的数据集有 ["good_answer", "bad_answer", "question"] 作为列,那么此数据集技术上可以与需要(锚点、正样本、负样本)三元组的损失一起使用,但 good_answer 列将被视为锚点,bad_answer 被视为正样本,而 question 被视为负样本。

此外,如果您的数据集包含无关列(例如 sample_id、metadata、source、type),您应该使用Dataset.remove_columns将其删除,否则它们将被用作输入。您也可以使用Dataset.select_columns仅保留所需的列。

难负样本挖掘

训练 CrossEncoder 模型成功的关键通常取决于负样本的质量,即查询-负样本得分应较低的段落。负样本可以分为两种类型:

  • 软负样本:完全不相关的段落。

  • 硬负样本:看起来可能与查询相关,但实际上不相关的段落。

一个简洁的例子是:

  • 查询:苹果公司在哪里成立的?

  • 软负样本:缓存河大桥是一座帕克桁架桥,横跨阿肯色州核桃岭和帕拉古尔德之间的缓存河。

  • 硬负样本:富士苹果是一种在1930年代后期开发,并于1962年推向市场的苹果品种。

最强大的 CrossEncoder 模型通常被训练来识别硬负样本,因此能够“挖掘”硬负样本非常有价值。Sentence Transformers 支持一个强大的 mine_hard_negatives() 函数,该函数可以在给定查询-答案对数据集的情况下提供帮助。

from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import mine_hard_negatives

# Load the GooAQ dataset: https://hugging-face.cn/datasets/sentence-transformers/gooaq
train_dataset = load_dataset("sentence-transformers/gooaq", split=f"train").select(range(100_000))
print(train_dataset)

# Mine hard negatives using a very efficient embedding model
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
hard_train_dataset = mine_hard_negatives(
    train_dataset,
    embedding_model,
    num_negatives=5,  # How many negatives per question-answer pair
    range_min=10,  # Skip the x most similar samples
    range_max=100,  # Consider only the x most similar samples
    max_score=0.8,  # Only consider samples with a similarity score of at most x
    absolute_margin=0.1,  # Anchor-negative similarity is at least x lower than anchor-positive similarity
    relative_margin=0.1,  # Anchor-negative similarity is at most 1-x times the anchor-positive similarity, e.g. 90%
    sampling_strategy="top",  # Sample the top negatives from the range
    batch_size=4096,  # Use a batch size of 4096 for the embedding model
    output_format="labeled-pair",  # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
    use_faiss=True,  # Using FAISS is recommended to keep memory usage low (pip install faiss-gpu or pip install faiss-cpu)
)
print(hard_train_dataset)
print(hard_train_dataset[1])
点击查看此脚本的输出。
Dataset({
    features: ['question', 'answer'],
    num_rows: 100000
})

Batches: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 22/22 [00:01<00:00, 12.74it/s]
Batches: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25/25 [00:00<00:00, 37.50it/s]
Querying FAISS index: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:18<00:00,  2.66s/it]
Metric       Positive       Negative     Difference
Count         100,000        436,925
Mean           0.5882         0.4040         0.2157
Median         0.5989         0.4024         0.1836
Std            0.1425         0.0905         0.1013
Min           -0.0514         0.1405         0.1014
25%            0.4993         0.3377         0.1352
50%            0.5989         0.4024         0.1836
75%            0.6888         0.4681         0.2699
Max            0.9748         0.7486         0.7545
Skipped 2,420,871 potential negatives (23.97%) due to the absolute_margin of 0.1.
Skipped 43 potential negatives (0.00%) due to the max_score of 0.8.
Could not find enough negatives for 63075 samples (12.62%). Consider adjusting the range_max, range_min, absolute_margin, relative_margin and max_score parameters if you'd like to find more valid negatives.
Dataset({
    features: ['question', 'answer', 'label'],
    num_rows: 536925
})

{
    'question': 'how to transfer bookmarks from one laptop to another?',
    'answer': 'Using an External Drive Just about any external drive, including a USB thumb drive, or an SD card can be used to transfer your files from one laptop to another. Connect the drive to your old laptop; drag your files to the drive, then disconnect it and transfer the drive contents onto your new laptop.',
    'label': 0
}

损失函数

损失函数量化了模型在给定一批数据上的表现,从而允许优化器更新模型权重以产生更优(即更低)的损失值。这是训练过程的核心。

遗憾的是,没有一个损失函数能适用于所有用例。相反,使用哪个损失函数在很大程度上取决于您可用的数据和目标任务。请参阅数据集格式,了解哪些数据集对哪些损失函数有效。此外,损失概述将是您了解选项的最佳助手。

大多数损失函数都可以只使用您正在训练的 CrossEncoder 以及一些可选参数进行初始化,例如:

from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sentence_transformers.cross_encoder.losses import MultipleNegativesRankingLoss

# Load a model to train/finetune
model = CrossEncoder("xlm-roberta-base", num_labels=1) # num_labels=1 is for rerankers

# Initialize the MultipleNegativesRankingLoss
# This loss requires pairs of related texts or triplets
loss = MultipleNegativesRankingLoss(model)

# Load an example training dataset that works with our loss function:
train_dataset = load_dataset("sentence-transformers/gooaq", split="train")

训练参数

CrossEncoderTrainingArguments 类可用于指定影响训练性能以及定义跟踪/调试参数的参数。虽然它是可选的,但强烈建议尝试各种有用的参数。



以下是 CrossEncoderTrainingArguments 如何初始化的示例:

from sentence_transformers.cross_encoder import CrossEncoderTrainingArguments

args = CrossEncoderTrainingArguments(
    # Required parameter:
    output_dir="models/reranker-MiniLM-msmarco-v1",
    # Optional training parameters:
    num_train_epochs=1,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    learning_rate=2e-5,
    warmup_ratio=0.1,
    fp16=True,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=False,  # Set to True if you have a GPU that supports BF16
    batch_sampler=BatchSamplers.NO_DUPLICATES,  # losses that use "in-batch negatives" benefit from no duplicates
    # Optional tracking/debugging parameters:
    eval_strategy="steps",
    eval_steps=100,
    save_strategy="steps",
    save_steps=100,
    save_total_limit=2,
    logging_steps=100,
    run_name="reranker-MiniLM-msmarco-v1",  # Will be used in W&B if `wandb` is installed
)

评估器

您可以为 CrossEncoderTrainer 提供一个 eval_dataset 以在训练期间获取评估损失,但在训练期间获取更具体的指标也可能很有用。为此,您可以使用评估器在训练前、训练期间或训练后使用有用的指标评估模型的性能。您可以同时使用 eval_dataset 和评估器,或其中之一,或两者都不用。它们根据 eval_strategyeval_steps 训练参数进行评估。

以下是 Sentence Transformers 为 Cross Encoder 模型实现的评估器:

评估器

所需数据

CrossEncoderClassificationEvaluator

带有类别标签(二元或多类)的对。

CrossEncoderCorrelationEvaluator

带相似度分数的句子对。

CrossEncoderNanoBEIREvaluator

无需数据。

CrossEncoderRerankingEvaluator

{'query': '...', 'positive': [...], 'negative': [...]} 字典列表。负样本可以通过 mine_hard_negatives() 挖掘。

此外,应使用 SequentialEvaluator 将多个评估器组合成一个可以传递给 CrossEncoderTrainer 的评估器。

有时您没有所需的评估数据来自己准备这些评估器之一,但您仍然希望跟踪模型在某些常见基准测试上的表现。在这种情况下,您可以使用这些带有 Hugging Face 数据的评估器。

from sentence_transformers import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator

# Load a model
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")

# Initialize the evaluator. Unlike most other evaluators, this one loads the relevant datasets
# directly from Hugging Face, so there's no mandatory arguments
dev_evaluator = CrossEncoderNanoBEIREvaluator()
# You can run evaluation like so:
# results = dev_evaluator(model)

CrossEncoderRerankingEvaluator 准备数据可能很困难,因为除了查询-正样本数据外,您还需要负样本。

mine_hard_negatives() 函数有一个方便的 include_positives 参数,可以设置为 True 以同时挖掘正文本。当作为 documents(必须 1. 排名且 2. 包含正样本)提供给 CrossEncoderRerankingEvaluator 时,评估器不仅会评估 CrossEncoder 的重新排序性能,还会评估用于挖掘的嵌入模型的原始排名。

例如:

CrossEncoderRerankingEvaluator: Evaluating the model on the gooaq-dev dataset:
Queries:  1000     Positives: Min 1.0, Mean 1.0, Max 1.0   Negatives: Min 49.0, Mean 49.1, Max 50.0
          Base  -> Reranked
MAP:      53.28 -> 67.28
MRR@10:   52.40 -> 66.65
NDCG@10:  59.12 -> 71.35

请注意,默认情况下,如果您将 CrossEncoderRerankingEvaluatordocuments 一起使用,评估器将用所有正样本重新排序,即使它们不在文档中。这对于从评估器中获得更强的信号很有用,但会给出稍微不切实际的性能。毕竟,最大性能现在是100,而通常它受限于第一阶段检索器是否实际检索到正样本。

您可以通过在初始化 CrossEncoderRerankingEvaluator 时设置 always_rerank_positives=False 来启用实际行为。使用这种实际的两阶段性能重复相同的脚本会产生:

CrossEncoderRerankingEvaluator: Evaluating the model on the gooaq-dev dataset:
Queries:  1000     Positives: Min 1.0, Mean 1.0, Max 1.0   Negatives: Min 49.0, Mean 49.1, Max 50.0
          Base  -> Reranked
MAP:      53.28 -> 66.12
MRR@10:   52.40 -> 65.61
NDCG@10:  59.12 -> 70.10
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CrossEncoderRerankingEvaluator
from sentence_transformers.util import mine_hard_negatives

# Load a model
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")

# Load the GooAQ dataset: https://hugging-face.cn/datasets/sentence-transformers/gooaq
full_dataset = load_dataset("sentence-transformers/gooaq", split=f"train").select(range(100_000))
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
print(eval_dataset)
"""
Dataset({
    features: ['question', 'answer'],
    num_rows: 1000
})
"""

# Mine hard negatives using a very efficient embedding model
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
hard_eval_dataset = mine_hard_negatives(
    eval_dataset,
    embedding_model,
    corpus=full_dataset["answer"],  # Use the full dataset as the corpus
    num_negatives=50,  # How many negatives per question-answer pair
    batch_size=4096,  # Use a batch size of 4096 for the embedding model
    output_format="n-tuple",  # The output format is (query, positive, negative1, negative2, ...) for the evaluator
    include_positives=True,  # Key: Include the positive answer in the list of negatives
    use_faiss=True,  # Using FAISS is recommended to keep memory usage low (pip install faiss-gpu or pip install faiss-cpu)
)
print(hard_eval_dataset)
"""
Dataset({
    features: ['question', 'answer', 'negative_1', 'negative_2', 'negative_3', 'negative_4', 'negative_5', 'negative_6', 'negative_7', 'negative_8', 'negative_9', 'negative_10', 'negative_11', 'negative_12', 'negative_13', 'negative_14', 'negative_15', 'negative_16', 'negative_17', 'negative_18', 'negative_19', 'negative_20', 'negative_21', 'negative_22', 'negative_23', 'negative_24', 'negative_25', 'negative_26', 'negative_27', 'negative_28', 'negative_29', 'negative_30', 'negative_31', 'negative_32', 'negative_33', 'negative_34', 'negative_35', 'negative_36', 'negative_37', 'negative_38', 'negative_39', 'negative_40', 'negative_41', 'negative_42', 'negative_43', 'negative_44', 'negative_45', 'negative_46', 'negative_47', 'negative_48', 'negative_49', 'negative_50'],
    num_rows: 1000
})
"""

reranking_evaluator = CrossEncoderRerankingEvaluator(
    samples=[
        {
            "query": sample["question"],
            "positive": [sample["answer"]],
            "documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
        }
        for sample in hard_eval_dataset
    ],
    batch_size=32,
    name="gooaq-dev",
)
# You can run evaluation like so
results = reranking_evaluator(model)
"""
CrossEncoderRerankingEvaluator: Evaluating the model on the gooaq-dev dataset:
Queries:  1000     Positives: Min 1.0, Mean 1.0, Max 1.0   Negatives: Min 49.0, Mean 49.1, Max 50.0
          Base  -> Reranked
MAP:      53.28 -> 67.28
MRR@10:   52.40 -> 66.65
NDCG@10:  59.12 -> 71.35
"""
# {'gooaq-dev_map': 0.6728370126462222, 'gooaq-dev_mrr@10': 0.6665190476190477, 'gooaq-dev_ndcg@10': 0.7135068904582963, 'gooaq-dev_base_map': 0.5327714512001362, 'gooaq-dev_base_mrr@10': 0.5239674603174603, 'gooaq-dev_base_ndcg@10': 0.5912299141913905}
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator

# Load a model
model = CrossEncoder("cross-encoder/stsb-TinyBERT-L4")

# Load the STSB dataset (https://hugging-face.cn/datasets/sentence-transformers/stsb)
eval_dataset = load_dataset("sentence-transformers/stsb", split="validation")
pairs = list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"]))

# Initialize the evaluator
dev_evaluator = CrossEncoderCorrelationEvaluator(
    sentence_pairs=pairs,
    scores=eval_dataset["score"],
    name="sts_dev",
)
# You can run evaluation like so:
# results = dev_evaluator(model)
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sentence_transformers.evaluation import TripletEvaluator, SimilarityFunction

# Load a model
model = CrossEncoder("cross-encoder/nli-deberta-v3-base")

# Load triplets from the AllNLI dataset (https://hugging-face.cn/datasets/sentence-transformers/all-nli)
max_samples = 1000
eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split=f"dev[:{max_samples}]")

# Create a list of pairs, and map the labels to the labels that the model knows
pairs = list(zip(eval_dataset["premise"], eval_dataset["hypothesis"]))
label_mapping = {0: 1, 1: 2, 2: 0}
labels = [label_mapping[label] for label in eval_dataset["label"]]

# Initialize the evaluator
cls_evaluator = CrossEncoderClassificationEvaluator(
    sentence_pairs=pairs,
    labels=labels,
    name="all-nli-dev",
)
# You can run evaluation like so:
# results = cls_evaluator(model)

警告

当使用分布式训练时,评估器只在第一个设备上运行,这与训练和评估数据集不同,后者在所有设备上共享。

训练器

CrossEncoderTrainer 是所有先前组件汇集的地方。我们只需用模型、训练参数(可选)、训练数据集、评估数据集(可选)、损失函数、评估器(可选)来指定训练器,然后就可以开始训练了。让我们看一个所有这些组件汇集在一起的脚本:

import logging
import traceback

from datasets import load_dataset

from sentence_transformers.cross_encoder import (
    CrossEncoder,
    CrossEncoderModelCardData,
    CrossEncoderTrainer,
    CrossEncoderTrainingArguments,
)
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator
from sentence_transformers.cross_encoder.losses import CachedMultipleNegativesRankingLoss

# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)

model_name = "microsoft/MiniLM-L12-H384-uncased"
train_batch_size = 64
num_epochs = 1
num_rand_negatives = 5  # How many random negatives should be used for each question-answer pair

# 1a. Load a model to finetune with 1b. (Optional) model card data
model = CrossEncoder(
    model_name,
    model_card_data=CrossEncoderModelCardData(
        language="en",
        license="apache-2.0",
        model_name="MiniLM-L12-H384 trained on GooAQ",
    ),
)
print("Model max length:", model.max_length)
print("Model num labels:", model.num_labels)

# 2. Load the GooAQ dataset: https://hugging-face.cn/datasets/sentence-transformers/gooaq
logging.info("Read the gooaq training dataset")
full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
logging.info(train_dataset)
logging.info(eval_dataset)

# 3. Define our training loss.
loss = CachedMultipleNegativesRankingLoss(
    model=model,
    num_negatives=num_rand_negatives,
    mini_batch_size=32,  # Informs the memory usage
)

# 4. Use CrossEncoderNanoBEIREvaluator, a light-weight evaluator for English reranking
evaluator = CrossEncoderNanoBEIREvaluator(
    dataset_names=["msmarco", "nfcorpus", "nq"],
    batch_size=train_batch_size,
)
evaluator(model)

# 5. Define the training arguments
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
run_name = f"reranker-{short_model_name}-gooaq-cmnrl"
args = CrossEncoderTrainingArguments(
    # Required parameter:
    output_dir=f"models/{run_name}",
    # Optional training parameters:
    num_train_epochs=num_epochs,
    per_device_train_batch_size=train_batch_size,
    per_device_eval_batch_size=train_batch_size,
    learning_rate=2e-5,
    warmup_ratio=0.1,
    fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=True,  # Set to True if you have a GPU that supports BF16
    # Optional tracking/debugging parameters:
    eval_strategy="steps",
    eval_steps=100,
    save_strategy="steps",
    save_steps=100,
    save_total_limit=2,
    logging_steps=50,
    logging_first_step=True,
    run_name=run_name,  # Will be used in W&B if `wandb` is installed
    seed=12,
)

# 6. Create the trainer & start training
trainer = CrossEncoderTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    loss=loss,
    evaluator=evaluator,
)
trainer.train()

# 7. Evaluate the final model, useful to include these in the model card
evaluator(model)

# 8. Save the final model
final_output_dir = f"models/{run_name}/final"
model.save_pretrained(final_output_dir)

# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
try:
    model.push_to_hub(run_name)
except Exception:
    logging.error(
        f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
        f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
        f"and saving it using `model.push_to_hub('{run_name}')`."
    )
import logging
import traceback

import torch
from datasets import load_dataset

from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import (
    CrossEncoder,
    CrossEncoderModelCardData,
    CrossEncoderTrainer,
    CrossEncoderTrainingArguments,
)
from sentence_transformers.cross_encoder.evaluation import (
    CrossEncoderNanoBEIREvaluator,
    CrossEncoderRerankingEvaluator,
)
from sentence_transformers.cross_encoder.losses import BinaryCrossEntropyLoss
from sentence_transformers.evaluation import SequentialEvaluator
from sentence_transformers.util import mine_hard_negatives

# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)


def main():
    model_name = "answerdotai/ModernBERT-base"

    train_batch_size = 64
    num_epochs = 1
    num_hard_negatives = 5  # How many hard negatives should be mined for each question-answer pair

    # 1a. Load a model to finetune with 1b. (Optional) model card data
    model = CrossEncoder(
        model_name,
        model_card_data=CrossEncoderModelCardData(
            language="en",
            license="apache-2.0",
            model_name="ModernBERT-base trained on GooAQ",
        ),
    )
    print("Model max length:", model.max_length)
    print("Model num labels:", model.num_labels)

    # 2a. Load the GooAQ dataset: https://hugging-face.cn/datasets/sentence-transformers/gooaq
    logging.info("Read the gooaq training dataset")
    full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
    dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
    train_dataset = dataset_dict["train"]
    eval_dataset = dataset_dict["test"]
    logging.info(train_dataset)
    logging.info(eval_dataset)

    # 2b. Modify our training dataset to include hard negatives using a very efficient embedding model
    embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
    hard_train_dataset = mine_hard_negatives(
        train_dataset,
        embedding_model,
        num_negatives=num_hard_negatives,  # How many negatives per question-answer pair
        margin=0,  # Similarity between query and negative samples should be x lower than query-positive similarity
        range_min=0,  # Skip the x most similar samples
        range_max=100,  # Consider only the x most similar samples
        sampling_strategy="top",  # Sample the top negatives from the range
        batch_size=4096,  # Use a batch size of 4096 for the embedding model
        output_format="labeled-pair",  # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
        use_faiss=True,
    )
    logging.info(hard_train_dataset)

    # 2c. (Optionally) Save the hard training dataset to disk
    # hard_train_dataset.save_to_disk("gooaq-hard-train")
    # Load again with:
    # hard_train_dataset = load_from_disk("gooaq-hard-train")

    # 3. Define our training loss.
    # pos_weight is recommended to be set as the ratio between positives to negatives, a.k.a. `num_hard_negatives`
    loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(num_hard_negatives))

    # 4a. Define evaluators. We use the CrossEncoderNanoBEIREvaluator, which is a light-weight evaluator for English reranking
    nano_beir_evaluator = CrossEncoderNanoBEIREvaluator(
        dataset_names=["msmarco", "nfcorpus", "nq"],
        batch_size=train_batch_size,
    )

    # 4b. Define a reranking evaluator by mining hard negatives given query-answer pairs
    # We include the positive answer in the list of negatives, so the evaluator can use the performance of the
    # embedding model as a baseline.
    hard_eval_dataset = mine_hard_negatives(
        eval_dataset,
        embedding_model,
        corpus=full_dataset["answer"],  # Use the full dataset as the corpus
        num_negatives=30,  # How many documents to rerank
        batch_size=4096,
        include_positives=True,
        output_format="n-tuple",
        use_faiss=True,
    )
    logging.info(hard_eval_dataset)
    reranking_evaluator = CrossEncoderRerankingEvaluator(
        samples=[
            {
                "query": sample["question"],
                "positive": [sample["answer"]],
                "documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
            }
            for sample in hard_eval_dataset
        ],
        batch_size=train_batch_size,
        name="gooaq-dev",
        # Realistic setting: only rerank the positives that the retriever found
        # Set to True to rerank *all* positives
        always_rerank_positives=False,
    )

    # 4c. Combine the evaluators & run the base model on them
    evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
    evaluator(model)

    # 5. Define the training arguments
    short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
    run_name = f"reranker-{short_model_name}-gooaq-bce"
    args = CrossEncoderTrainingArguments(
        # Required parameter:
        output_dir=f"models/{run_name}",
        # Optional training parameters:
        num_train_epochs=num_epochs,
        per_device_train_batch_size=train_batch_size,
        per_device_eval_batch_size=train_batch_size,
        learning_rate=2e-5,
        warmup_ratio=0.1,
        fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
        bf16=True,  # Set to True if you have a GPU that supports BF16
        dataloader_num_workers=4,
        load_best_model_at_end=True,
        metric_for_best_model="eval_gooaq-dev_ndcg@10",
        # Optional tracking/debugging parameters:
        eval_strategy="steps",
        eval_steps=1000,
        save_strategy="steps",
        save_steps=1000,
        save_total_limit=2,
        logging_steps=200,
        logging_first_step=True,
        run_name=run_name,  # Will be used in W&B if `wandb` is installed
        seed=12,
    )

    # 6. Create the trainer & start training
    trainer = CrossEncoderTrainer(
        model=model,
        args=args,
        train_dataset=hard_train_dataset,
        loss=loss,
        evaluator=evaluator,
    )
    trainer.train()

    # 7. Evaluate the final model, useful to include these in the model card
    evaluator(model)

    # 8. Save the final model
    final_output_dir = f"models/{run_name}/final"
    model.save_pretrained(final_output_dir)

    # 9. (Optional) save the model to the Hugging Face Hub!
    # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
    try:
        model.push_to_hub(run_name)
    except Exception:
        logging.error(
            f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
            f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
            f"and saving it using `model.push_to_hub('{run_name}')`."
        )


if __name__ == "__main__":
    main()

回调

此 CrossEncoder 训练器集成了对各种 transformers.TrainerCallback 子类的支持,例如:

  • WandbCallback,如果安装了wandb,则自动将训练指标记录到W&B

  • TensorBoardCallback,如果tensorboard可访问,则将训练指标记录到TensorBoard。

  • CodeCarbonCallback,如果安装了codecarbon,则在训练期间跟踪模型的碳排放。

    • 注意:这些碳排放量将被包含在您自动生成的模型卡片中。

有关集成回调以及如何编写您自己的回调的更多信息,请参阅 Transformers 回调文档。

多数据集训练

性能最好的模型通常使用许多数据集同时进行训练。通常,这相当棘手,因为每个数据集都有不同的格式。然而,CrossEncoderTrainer 可以用多个数据集进行训练,而无需将每个数据集转换为相同的格式。它甚至可以对每个数据集应用不同的损失函数。使用多个数据集进行训练的步骤是:

  • 使用Dataset实例的字典(或DatasetDict)作为train_dataset(可选地,也作为eval_dataset)。

  • (可选)使用一个损失函数字典,将数据集名称映射到损失。仅当您希望为不同的数据集使用不同的损失函数时才需要。

每个训练/评估批次将只包含来自一个数据集的样本。批次从多个数据集中采样的顺序由 MultiDatasetBatchSamplers 枚举定义,该枚举可以通过 multi_dataset_batch_sampler 传递给 CrossEncoderTrainingArguments。有效选项包括:

  • MultiDatasetBatchSamplers.ROUND_ROBIN: 从每个数据集中轮流采样,直到其中一个耗尽。使用此策略,可能不会使用每个数据集中的所有样本,但每个数据集都被同等地采样。

  • MultiDatasetBatchSamplers.PROPORTIONAL(默认):按其大小比例从每个数据集采样。使用此策略,每个数据集中的所有样本都会被使用,并且更大的数据集会更频繁地被采样。

训练技巧

交叉编码器模型有其独特的特点,以下是一些帮助您的技巧:

  1. CrossEncoder 模型很容易过拟合,因此建议使用像 CrossEncoderNanoBEIREvaluatorCrossEncoderRerankingEvaluator 这样的评估器,并结合 load_best_model_at_endmetric_for_best_model 训练参数,以便在训练结束后加载具有最佳评估性能的模型。

  2. CrossEncoder 对强硬负样本(mine_hard_negatives())特别敏感。它们教会模型非常严格,例如在区分回答问题段落和与问题相关段落时非常有用。

    1. 请注意,如果您只使用硬负样本,您的模型在较简单的任务上可能会意外地表现更差。这可能意味着重新排序第一阶段检索系统(例如使用 SentenceTransformer 模型)的前200个结果,实际上可能会比重新排序前100个结果给出更差的前10个结果。使用随机负样本和硬负样本一起训练可以缓解这个问题。

  3. 不要低估 BinaryCrossEntropyLoss,尽管它比学习排序损失(LambdaLossListNetLoss)或批内负样本损失(CachedMultipleNegativesRankingLossMultipleNegativesRankingLoss)更简单,但它仍然是一个非常强大的选择,而且其数据易于准备,尤其是在使用 mine_hard_negatives() 时。

已弃用的训练方法

在 Sentence Transformers v4.0 版本发布之前,模型通常使用 CrossEncoder.fit() 方法和 InputExampleDataLoader 进行训练,其形式大致如下:

from sentence_transformers import CrossEncoder, InputExample
from torch.utils.data import DataLoader

# Define the model. Either from scratch of by loading a pre-trained model
model = CrossEncoder("distilbert/distilbert-base-uncased")

# Define your train examples. You need more than just two examples...
train_examples = [
    InputExample(texts=["What are pandas?", "The giant panda ..."], label=1),
    InputExample(texts=["What's a panda?", "Mount Vesuvius is a ..."], label=0),
]

# Define your train dataset, the dataloader and the train loss
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)

# Tune the model
model.fit(train_dataloader=train_dataloader, epochs=1, warmup_steps=100)

自 v4.0 版本发布以来,仍然可以使用 CrossEncoder.fit(),但它会在幕后初始化一个 CrossEncoderTrainer。建议直接使用 Trainer,因为您可以通过 CrossEncoderTrainingArguments 获得更多控制权,但依赖 CrossEncoder.fit() 的现有训练脚本应该仍然有效。

如果更新的 CrossEncoder.fit() 存在问题,您也可以通过调用 CrossEncoder.old_fit() 来获得完全相同的旧行为,但此方法计划在将来完全弃用。

与 SentenceTransformer 训练的比较

训练 CrossEncoder 模型与训练 SentenceTransformer 模型非常相似,但存在一些关键差异:

  • SentenceTransformer 训练中,您不能在训练/评估数据集的列中使用输入列表(例如,文本)。对于 CrossEncoder 训练,您可以在列中使用(可变大小的)文本列表。例如,这是 ListNetLoss 类所必需的。

有关训练 SentenceTransformer 模型的更多详细信息,请参阅 Sentence Transformer > 训练概述 文档。