提示

Sentence Transformers v5.0 已发布,引入了 SparseEncoder 模型,这是一类用于高效神经网络词法搜索和混合检索的新模型。阅读稀疏编码器 > 用法,了解如何使用它们,或查看v5.0 发布说明以获取其他更改的详细信息。

SentenceTransformers 文档

Sentence Transformers(又名 SBERT)是用于访问、使用和训练最先进嵌入和重排序器模型的首选 Python 模块。它可用于使用句子 Transformer 模型(快速入门)计算嵌入,使用交叉编码器(又名重排序器)模型(快速入门)计算相似度分数,或使用稀疏编码器模型(快速入门)生成稀疏嵌入。这开启了广泛的应用,包括语义搜索语义文本相似度释义挖掘

🤗 Hugging Face 上有超过10,000 个预训练 Sentence Transformers 模型可供即时使用,其中包括来自大规模文本嵌入基准 (MTEB) 排行榜的许多最先进模型。此外,使用 Sentence Transformers 训练或微调您自己的嵌入模型重排序器模型稀疏编码器模型非常容易,使您能够为特定用例创建自定义模型。

Sentence Transformers 由UKPLab 创建,并由🤗 Hugging Face 维护。如果遇到问题或有其他疑问,请随时在Sentence Transformers 仓库中提出 issue。

用法

另请参阅

有关如何使用 Sentence Transformers 的更多快速信息,请参阅快速入门

使用 Sentence Transformer 模型非常简单

from sentence_transformers import SentenceTransformer

# 1. Load a pretrained Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")

# The sentences to encode
sentences = [
    "The weather is lovely today.",
    "It's so sunny outside!",
    "He drove to the stadium.",
]

# 2. Calculate embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# 3. Calculate the embedding similarities
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6660, 0.1046],
#         [0.6660, 1.0000, 0.1411],
#         [0.1046, 0.1411, 1.0000]])
from sentence_transformers import CrossEncoder

# 1. Load a pretrained CrossEncoder model
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")

# The texts for which to predict similarity scores
query = "How many people live in Berlin?"
passages = [
    "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.",
    "Berlin has a yearly total of about 135 million day visitors, making it one of the most-visited cities in the European Union.",
    "In 2013 around 600,000 Berliners were registered in one of the more than 2,300 sport and fitness clubs.",
]

# 2a. Either predict scores pairs of texts
scores = model.predict([(query, passage) for passage in passages])
print(scores)
# => [8.607139 5.506266 6.352977]

# 2b. Or rank a list of passages for a query
ranks = model.rank(query, passages, return_documents=True)

print("Query:", query)
for rank in ranks:
    print(f"- #{rank['corpus_id']} ({rank['score']:.2f}): {rank['text']}")
"""
Query: How many people live in Berlin?
- #0 (8.61): Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.
- #2 (6.35): In 2013 around 600,000 Berliners were registered in one of the more than 2,300 sport and fitness clubs.
- #1 (5.51): Berlin has a yearly total of about 135 million day visitors, making it one of the most-visited cities in the European Union.
"""
from sentence_transformers import SparseEncoder

# 1. Load a pretrained SparseEncoder model
model = SparseEncoder("naver/splade-cocondenser-ensembledistil")

# The sentences to encode
sentences = [
    "The weather is lovely today.",
    "It's so sunny outside!",
    "He drove to the stadium.",
]

# 2. Calculate sparse embeddings by calling model.encode()
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 30522] - sparse representation with vocabulary size dimensions

# 3. Calculate the embedding similarities
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[   35.629,     9.154,     0.098],
#         [    9.154,    27.478,     0.019],
#         [    0.098,     0.019,    29.553]])

# 4. Check sparsity stats
stats = SparseEncoder.sparsity(embeddings)
print(f"Sparsity: {stats['sparsity_ratio']:.2%}")
# Sparsity: 99.84%

下一步是什么?

请阅读以下部分之一以回答相关问题

引用

如果您觉得此仓库有用,请随时引用我们的出版物 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

@inproceedings{reimers-2019-sentence-bert,
  title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
  author = "Reimers, Nils and Gurevych, Iryna",
  booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
  month = "11",
  year = "2019",
  publisher = "Association for Computational Linguistics",
  url = "https://arxiv.org/abs/1908.10084",
}

如果您使用多语言模型之一,请随时引用我们的出版物 Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation

@inproceedings{reimers-2020-multilingual-sentence-bert,
  title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
  author = "Reimers, Nils and Gurevych, Iryna",
  booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
  month = "11",
  year = "2020",
  publisher = "Association for Computational Linguistics",
  url = "https://arxiv.org/abs/2004.09813",
}

如果您使用数据增强的代码,请随时引用我们的出版物 Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks

@inproceedings{thakur-2020-AugSBERT,
  title = "Augmented {SBERT}: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks",
  author = "Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes  and Gurevych, Iryna",
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://www.aclweb.org/anthology/2021.naacl-main.28",
  pages = "296--310",
}